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a b s t r a c t

We consider the symmetric group Sn as a metric space with the
Hamming metric. The covering radius cr(S) of a set of permuta-
tions S ⊂ Sn is the smallest r such that Sn is covered by the balls of
radius r centred at the elements of S. For given n and s, let f (n, s)
denote the cardinality of the smallest set S of permutations with
cr(S) 6 n − s.

The value of f (n, 2) is the subject of a conjecture by Kézdy and
Snevily that implies two famous conjectures by Ryser and Brualdi
on transversals in Latin squares. We show that f (n, 2) 6 n +

O(log n) for all n and that f (n, 2) 6 n + 2 whenever n = 3m for
m > 1. We also construct, for each odd m > 3, a Latin square of
order 3mwith two rows that each contain 2m− 2 transversal-free
entries. This gives an infinite family of Latin squares with odd or-
der n and at most n/3 + O(1) disjoint transversals. The previous
strongest upper bound for such a family was n/2 + O(1).

Finally, we show that f (5, 3) = 15 and record a proof by Black-
burn that cr(AGL(1, q)) = q − 3 when q is odd.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let S be a subset of a finite metric space, in which all the distances are integers. The covering radius
cr(S) of S is the smallest r such that the balls of radius r with centres at the elements of S cover the
whole space.

Consider the symmetric group Sn as a metric space equipped with Hamming distance. For any
g, h ∈ Sn, the distance between g and h is the number of points at which they disagree, i.e., nminus the
number of fixed points of gh−1. Note that it is invariant under left and right translation. The symmetric
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group has been studied as a setting for coding theory since the paper of Blake et al. [1] and in recent
years some attention has been given to questions about covering radius [17].

1.1. The covering radius problem

The classical problem related to covering radius in coding theory is to find the smallest set with
a given covering radius. In the case of the symmetric group, the problem is stated as: given n and s,
what is the smallestm such that there is a set S of permutations with |S| = m and cr(S) 6 n − s? We
let f (n, s) denote this minimum valuem.

By definition, f (n, s) is a monotonic increasing function of s. Trivially, f (n, 0) = 1 and f (n, n) = n!.
We also have f (n, n− 1) = n! for n > 2, since any two distinct permutations have distance at least 2.
Recently, it was determined that f (n, 1) = ⌊n/2⌋ + 1 in [3,4]. The next tempting case to consider is
f (n, 2). Kézdy and Snevily made the following conjecture.

Conjecture 1.1. If n is even, then f (n, 2) = n; if n is odd, then f (n, 2) > n.

The state of knowledge for small values of f (n, 2) is provided in the following table. The value of
f (6, 2) is new, and was determined by exhaustive search. Others values are from [4].

n 3 4 5 6 7 8 9 10
f (n, 2) 6 4 6 6 6 8 6 8 6 10 6 10

The following general upper bounds are proved in [4].

Theorem 1.2.

f (n, 2) 6


n if n is even,
5
4
n + O(1) if n ≡ 1 mod 4,

4
3
n + O(1) if n ≡ 3 mod 4.

One of the primary aims of this paper is to present better upper bounds on f (n, 2) when n is odd.
Although we are unable to settle Conjecture 1.1, we will show for the first time that f (n, 2) does not
exceed a function that is asymptotically equal to n.

1.2. Transversals of Latin squares

A Latin square of order n is an n × n matrix L in which n distinct symbols are arranged so that
each symbol occurs once in each row and column. We can specify L by a set of n2 ordered triples
(x, y, z) ∈ I(L)3, where I(L) is a set of cardinality n, and no two distinct triples agree in more than one
coordinate. The interpretation is that z is the symbol in column y of row x. We say that L is indexed by
I(L) and that (x, y, z) is an entry of L, i.e., (x, y, z) ∈ L. A transversal in a Latin square is a selection of
n distinct entries in which each row, column and symbol is represented exactly once. See [18] for a
recent survey on transversals of Latin squares, including their connections to covering radii of sets of
permutations.

An entry that is not in any transversal will be described as transversal-free, whereas an entry that is
in some transversal will be described as a transversal entry. In [10], computational evidence was given
to suggest that Latin squares typically have a transversal through every entry.

Theorem 1.3 ([4]). Let S be the set of n permutations corresponding to the rows of a Latin square L of
order n. Then cr(S) = n − 1 if L has a transversal and cr(S) = n − 2 otherwise.

It was conjectured by Ryser (see [6, p. 486]) that every Latin square of odd order has a transversal;
this is still open. By Theorem 1.3, the Kézdy–Snevily Conjecture trivially implies Ryser’s conjecture.
In [6], Brualdi conjectured that every Latin square of order n contains a partial transversal of size n−1
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(see also [4,11,18]). It is known [4] that theKézdy–Snevily Conjecture also implies Brualdi’s conjecture.
The fact that Conjecture 1.1 implies two famous unsolved conjectures provides significant motivation
for its study.

For a given Latin square L of order n, we define λ(L) to be themaximumm such that L hasm disjoint
transversals. It is well known that there are Latin squares of every even order with no transversals.
In [9] and [10], it was shown that for even n > 10 and j = 1 or j ≡ 0 mod 4 such that 0 6 j 6 n, there
exists a Latin square L of order nwith λ(L) = j.

For all positive integers n, we define µ(n) to be the minimum value of λ among the Latin squares
of order n. Clearly, µ(n) = 0 for all even n, so we are concerned with the case when n is odd. If
Ryser’s Conjecture is true, then µ(n) > 1 for all odd n. For n ∈ {1, 3} we have µ(n) = n. For order
n ∈ {5, 7} there is a Latin square whose transversals coincide on one entry, hence µ(5) = µ(7) = 1.
By computation, it was determined in [9] that µ(9) = 3. A general upper bound for µ(n), derived
from [12,14] and first stated in [10], is the following.

Theorem 1.4. If n is odd and n > 3, then µ(n) 6 1
2 (n + 1).

1.3. Our contributions

In this paper, we focus primarily on the investigation of the values f (n, 2). We improve the upper
bounds in Theorem 1.2 by giving explicit sets of permutations in Sn with covering radius n − 2. In
particular, we show that f (n, 2) 6 n + O(log n) for all n. For n > 3 and divisible by 3, we prove a
better bound saying that f (n, 2) 6 n + 2. Further, we improve the bound in Theorem 1.4 for odd n
divisible by 3, by showing that µ(n) 6 1

3n + 2 in this case.
Additionally, we determine the exact value of f (5, 3), which equals 15. This is the smallest non-

trivial case for f (n, 3). We also give a proof due to Blackburn that the covering radius of AGL(1, q) is
q − 3 when q is odd.

2. A general upper bound

In this section, we define a family of Latin squares Hn with the property that each Hn has two
transversal-free entries in the second row and strong restrictions on the transversal entries in the
first and third rows. This family of Latin squares was first constructed by Egan [7] to prove the exis-
tence of Latin squareswith large indivisible plexes. Herewe useHn to prove that f (n, 2) 6 n+O(log n)
for all odd n. However, we first introduce some useful notation.

Let Σ = {σ1, σ2, . . . , σn} be a set of size n and consider the natural action of Sn on Σ . For
each g ∈ Sn and 1 6 i 6 n, we write σ

g
i for the image of σi under g . The passive form of g

is the word σ
g
1 σ

g
2 · · · σ

g
n . Let L be a Latin square indexed by Σ . We will associate each transversal

T = {(xi, σi, zi) : i = 1, 2, . . . , n} of Lwith the corresponding permutation z1z2 · · · zn in Sn.
Next, we sketch the main method of constructing a set S ⊂ Sn with covering radius n − 2 used

throughout the paper. Let S ′ be the set of n permutations corresponding to the rows of the Latin square
L. Note that the permutations not covered by the balls of radius n − 2 with centres at the elements
of S ′ are those corresponding to the transversals of L. Find a small set S ′′

⊂ Sn whose balls of radius
n − 2 cover all the permutations corresponding to the transversals, then S = S ′

∪ S ′′ is the desired
set with covering radius n− 2. Since the cardinality of S ′′ determines that of S, we want S ′′ as small as
possible, which is achieved by constructing the Latin square Lwith strongly restricted transversals.

Now we state a key lemma, which is extremely useful for studying transversals in a Latin square.
Let G be an Abelian group and let L be a Latin square of order |G| where I(L) = G. For each entry
e = (x, y, z) of L, define the function ∆ : L → G by ∆(e) = z − x − y.

Lemma 2.1. Let G be an Abelian group with identity ε and let L be a Latin square indexed by G. If T is a
transversal in L, then

e∈T

∆(e) = −


g∈G

g =


ω if G has a unique involution ω,
ε otherwise.
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Variations of Lemma 2.1 can be found in [2,5,7–10,12,16,19]. When applying this lemma, we focus
on the following subsets of L:

∆∗ =

e ∈ L : ∆(e) ≠ ε


, ∆g =


e ∈ L : ∆(e) = g},

where g is an element of G \ {ε}.

2.1. Latin squares Hn

Latin square Hn: For odd n > 3, we define the Latin square Hn of order n and indexed by Zn as
follows, where Hn[x, y] = z for each (x, y, z) ∈ Hn. Let F = {1, 3, 5, . . . , n− 2} ⊂ Zn and E = Zn \ F .

Hn[x, y] =


1 if (x, y) ∈ {(0, 0), (1, n − 1)},
0 if (x, y) ∈ {(1, 0), (2, n − 1)},
y + 2 if x = 0 and y ∈ F ,
y if x = 2 and y ∈ F ,
x + y otherwise.

For each e ∈ ∆∗ ⊂ Hn, the value of ∆(e) is given below.

0 1 3 · · · n − 2 n − 1
0 1 2 2 · · · 2
1 −1 1
2 −2 −2 · · · −2 −1

It has been proved [7] that the entries (1, 0, 0) and (1, n − 1, 1) in Hn are not in any transversal.
Nowwe consider transversal entries in Hn. If T is a transversal of Hn including an entry in ∆2, then by
Lemma 2.1, T must include an entry in ∆−2, i.e., the two transversal entries of T in rows 0 and 2 are in
two distinct columns from F . Similarly, if T includes an entry in row 0 and column from E \ {0}, then
the corresponding transversal entry in row 2 must be in a distinct column from E \ {n − 1}. Further,
(0, 0, 1) ∈ T if and only if (2, n − 1, 0) ∈ T . These simple observations will allow us to find a better
upper bound on f (n, 2).

2.2. Biclique cover

Let G = (V , E) be a simple undirected graph. A biclique cover of G is a collection of bicliques
(complete bipartite subgraphs) of G such that every edge ofG belongs to at least one of these bicliques.
The biclique covering number bc(G) of G is the cardinality of a minimum biclique cover (MBC) of G; we
use the notation of [15] (this parameter is called the bipartite dimension in [13]). The MBC problem is
the problem of determining bc(G) for any simple graph G.

Now we consider the MBC problem for a family of bipartite graphs. Let K ′
m,m be a bipartite graph

with two vertex parts Ai = {1i, 2i, . . . ,mi}, i = 1, 2. For all k, l ∈ {1, 2, . . . ,m}, k1 is adjacent to l2
except when l = k or l = k + 1. Note that the calculations in this subsection are all in Z. Denote
bc(K ′

m,m) by bc(m) for short. Trivially, bc(1) = 0 and bc(2) = 1. For convenience, we describe a
biclique B in K ′

m,m by specifying the vertices that induce B, writing B = B1|B2, where Bi ⊂ Ai, i = 1, 2.

Example 2.2. Here is a biclique cover of K ′

4,4 of cardinality four comprised of P , Q , B(1) and B(2), where

P = {11, 21}|{42}, Q = {31, 41}|{12, 22},

B(1)
= {11, 41}|{32} and B(2)

= {21}|{12}.

When m = 2k, we have the following upper bound on the biclique covering number of K ′
m,m.

Lemma 2.3. bc(2k) 6 3k − 2 for all positive integers k.

Proof. It is true when k = 1. For each subset X ⊆ {1i, 2i, 3i, . . . , 2k
i }, i = 1, 2, denote X̂ = {(a+ 2k)i :

ai ∈ X}. We prove the upper bound on bc(2k) by giving a constructive algorithm for a biclique cover
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of K ′

2k,2k
with cardinality 3k − 2 for all k > 2, which involves the following steps.

(S.1) Initialize k = 2. Let P , Q and a set B = {B(1), B(2)
} be the biclique cover of K ′

4,4 of size 4 listed in
Example 2.2.

(S.2) Suppose that {P,Q } ∪ B is a biclique cover of K ′

2k,2k
of size 3k − 2 with |B| = 3k − 4. We will

construct a biclique cover of K ′

2k+1,2k+1 of size 3k + 1, including P ′, Q ′ and a set B′ with |B′
|

= 3k − 1.
(i) Define two bicliques P ′

= {11, 21, . . . , 2k
1}|{(2

k
+ 2)2, (2k

+ 3)2, . . . , 2k+1
2 } and Q ′

= {(2k

+ 1)1, (2k
+ 2)1, . . . , 2k+1

1 }|{12, 22, . . . , 2k
2}.

(ii) For each B ∈ B, define a biclique B′
= (B1 ∪ B̂1)|(B2 ∪ B̂2) of K ′

2k+1,2k+1 . Put B′ into B′.

(iii) Let B′

P = (P1 ∪ Q̂1)|(P2 ∪ Q̂2) and B′

Q = (P̂1 ∪ Q1)|(P̂2 ∪ Q2). Put B′

P and B′

Q into B′.
(iv) Finally, put a biclique B′

F = {11, 21, . . . , (2k
− 1)1}|{(2k

+ 1)2} into B′ and go to (S.3).
(S.3) It is easy to check that {P ′,Q ′

}∪B′ is a biclique cover ofK ′

2k+1,2k+1 of size 3k+1. Update k := k+1,
P := P ′, Q := Q ′ and B := B′, then go to (S.2).

From the above algorithm, we obtain a biclique cover of K ′

2k,2k
of size 3k − 2 for all k > 2. �

Example 2.4. Applying step (S.2) in Lemma 2.3 to the biclique cover of K ′

4,4 in Example 2.2, we get a
biclique cover of K ′

8,8 of size seven consisting of the bicliques below.

P ′
= {11, 21, 31, 41}|{62, 72, 82}, Q ′

= {51, 61, 71, 81}|{12, 22, 32, 42},

B′
(1)

= {11, 41, 51, 81}|{32, 72}, B′
(2)

= {21, 61}|{12, 52},

B′

P = {11, 21, 71, 81}|{42, 52, 62}, B′

Q = {31, 41, 51, 61}|{12, 22, 82} and

B′

F = {11, 21, 31}|{52}.

Observing that K ′
m,m is an induced subgraph of K ′

l,l if m 6 l, we get the following corollary of
Lemma 2.3.

Corollary 2.5. bc(m) 6 3⌈log2 m⌉ − 2 for all integers m > 1.

Proof. Let k be the smallest integer such thatm 6 2k. By Lemma 2.3, K ′

2k,2k
has a biclique cover of size

3k − 2, which induces a cover of K ′
m,m. �

2.3. An upper bound on f (n, 2)

We begin by listing the entries of Hn in rows 0 and 2 in the following table.

0 1 2 3 4 5 6 · · · n − 6 n − 5 n − 4 n − 3 n − 2 n − 1
0 1 (3 2) (5 4) (7 6) · · · (n − 4 n − 5) (n − 2 n − 3) (0 n − 1)
2 (2 1) (4 3) (6 5) (8 · · · n − 6) (n − 3 n − 4) (n − 1 n − 2) 0

(1)

Regard each pair of entries {(r, c, s1), (r, c + 1, s2)} within parentheses in (1) as a vertex. Let A1 be
the vertex set defined in row 0 ordered in a natural way, and A2 be that in row 2. Obviously, |A1| =

|A2| = (n−1)/2. LetΓ be the bipartite graphK ′

(n−1)/2,(n−1)/2 defined overA1∪A2 as in Section 2.2. Note
that if two vertices u = {(0, c, s1), (0, c+1, s2)} ∈ A1 and v = {(2, c ′, s′1), (2, c

′
+1, s′2)} ∈ A2 are not

adjacent in Γ , then no transversal of Hn includes one entry from u and one from v simultaneously. By
Corollary 2.5, Γ has a biclique cover of size 3 ⌈log2(n − 1)⌉ − 5, which consists of P , Q , and a set B.

Lemma 2.6. f (n, 2) 6 n + 3⌈log2(n − 1)⌉ − 5 for all odd n > 3.

Proof. We have to construct a set S of n + 3⌈log2(n − 1)⌉ − 5 permutations which have at least
two agreements with every permutation in Sn. The first n permutations are from the rows of Hn. The
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Fig. 1. Values of ∆ on D3m .

remaining permutations of S are based on the biclique cover {P,Q } ∪ B of Γ from Corollary 2.5. For
each biclique B ∈ B ∪ {Q }, define gB to be any permutation over Zn satisfying that cgB = s for all
entries (r, c, s) involved in the vertices of B. The permutation gB is well defined since for any two
entries (r, c, s) and (r ′, c ′, s′) contained in the vertices of B, we have c ≠ c ′ and s ≠ s′. Finally, define
gP to be a permutation such that 0gP = 1, (n− 1)gP = 0 and cgP = s for all entries (r, c, s) involved in
the vertices of P . By construction, each permutation corresponding to a transversal of Hn agrees in at
least two places with a permutation gB for at least one B ∈ {P,Q } ∪ B. �

3. A better upper bound for orders divisible by three

In this section we use the following family of Latin squares D3m, which were first constructed
in [10], to give the upper bound f (3m, 2) 6 3m + 2 for all odd m > 3. Note that in both this and
the next section, we consider S3m acting on Z3 ⊕ Zm, which we will always write in the order

(0, 0), (0, 1), . . . , (0,m − 1), (1, 0), (1, 1), . . . , (1,m − 1), (2, 0), (2, 1), . . . , (2,m − 1).

Latin square D3m: For odd m > 3, we define the Latin square D3m of order 3m and indexed by
Z3 ⊕ Zm.

D3m[(a, b), (c, d)] =



(1, d) if (a = b = c = 0) or (a = 2, b = 0 and c = 1),
(0, d) if (a = b = 0 and c = 1) or (a = c = 2 and b = 0),
(0, d + 1) if a = 1 and b = c = 0,
(1, d + 1) if a = 1, b = 0 and c = 2,
(0, d) if a = c = 0 and b = 1,
(1, b + d + 1) if a = c = 2 and b ≠ 0,
(a + c, b + d) otherwise.

Let ℓ = m− 1. For each e ∈ ∆∗ ⊂ D3m, the abbreviated ordered pairs ∆(e) are displayed in Fig. 1.
We use the same notation as in [10]. Suppose that T is a transversal of D3m. Define xij to be the

number of entries in T of the form

(i, b), (j, d), (e, f )


where b, d and f are arbitrary and e = i + j in

Z3, and yij to be the number of entries in T of the same form, but where e ≠ i+ j in Z3. Finally, let z be
the number of entries in T of the form


(0, 1), (0, d), (0, d)


where d is arbitrary. The shaded region

in Fig. 1 shows an (m − 1) × m subrectangle, which has been proved to consist of transversal-free
entries [10].

Lemma 3.1 ([10]). y10 = x00 − z = 0.
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A number of constraints are immediate from the definition of D3m, such as 0 6 xij 6 m, 0 6 yij 6 1,
0 6 z 6 1 and the fact that y02 = y11 = y20 = 0. Moreover, the construction of D3m forces

y00 + y01 6 1, y21 + y22 6 1, (2)
0 6 x22 6 m − 1. (3)

Also, the need for T to include one representative from each row, column and symbol of D3m implies

x00 + x01 + x02 + y00 + y01 = m, (4)
x20 + x21 + x22 + y21 + y22 = m, (5)
x01 + x11 + x21 + y01 + y21 = m, (6)
x02 + x12 + x22 + y12 + y22 = m, (7)
x00 + x12 + x21 + y01 + y22 = m, (8)
x02 + x11 + x20 = m. (9)

Adding (4), (5), then subtracting (6) and (9), gives

x00 + x22 − 2x11 + y00 + y22 = 0. (10)

Adding (5), (7), then subtracting (8) and (9), gives

2x22 − x00 − x11 + y12 + y21 + y22 − y01 = 0. (11)

Moreover, Lemma 2.1 necessitates that

3 | y00 + 2y01 + y12 + y21 + 2y22, (12)
m | x22 + y12 − z. (13)

Define u to be the number of entries in T of the form

(1, 0), (1, d), (2, d)


where d is arbitrary.

Then u + y12 = 1 since y10 = 0.

Lemma 3.2. If z = 0, then u = y00 = y22 = 1.

Proof. We assume that z = 0. Lemma 3.1 implies that x00 = 0.
First suppose that u = 0. Then y12 = 1, which with (13) leads to x22 = m − 1. By (11),

x11 = 2x22 − x00 + y12 + y21 + y22 − y01
= 2(m − 1) + 1 + y21 + y22 − y01
> 2(m − 1) + 1 + 0 − 1 = 2(m − 1).

However, u = 0 implies x11 6 m − 1 which yields a contradiction.
So u = 1, which implies y12 = 0. By (13), it follows that x22 = 0, which together with (10) gives

y00 + y22 = 2x11 > 2u = 2. Hence, y00 = y22 = 1. �

Note that Lemma 3.2 implies z + y00 > 1, which means that each transversal of D3m includes at
least one entry in rows (0, 0) or (0, 1), and column (0, d), for some d. Further, if a transversal includes
no entry in row (0, 1) and column (0, d), then it must include an entry in row (1, 0) and column (1, e)
for some e. This allows us to give an upper bound for f (3m, 2).

Theorem 3.3. f (3m, 2) 6 3m + 2 for all odd m > 3.

Proof. We take as our set S the rows of D3m, plus 2 further permutations

(0, 0)(0, 1) · · · (0, l)(2, 0)(2, 1) · · · (2, l)(1, 1)(1, 2) · · · (1, l)(1, 0)

and

(1, 0)(1, 1) · · · (1, l)(2, 0)(2, 1) · · · (2, l)(0, 0)(0, 1) · · · (0, l).

The first ensures two agreementswith the permutations corresponding to any transversal with z = 1,
given that u+y12 = 1. The second ensures three agreements with those permutations corresponding
to any transversal with z = 0, given that y00 = u = y22 = 1. �
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4. Latin squares with many transversal-free entries in a row

In this section, we construct a family of Latin squares F3m, where for each oddm > 3, F3m has order
3mwith two rows that each contain 2m − 2 transversal-free entries.

4.1. Latin squares F3m

For distinct i, j ∈ {0, 1, 2, 3}, define Ψi,j ⊆ Zm to be the set of congruence classes modulo m that
contain an integer in the interval [0,m − 1] that is congruent to i or j modulo 4. Given an element
c ∈ Zm and a subset A ⊆ Zm, define A + c = {a + c ∈ Zm : a ∈ A}. For each i ∈ Z3, we define subsets
Yi, Ui, Vi and Wi of Zm as follows:

Y0 = Y2 = Ψ2,3, Y1 = Y0 + 1,
U0 = U2 = Ψ0,1, U1 = Zm \ Y1,
V0 = V2 = Y0 + 2, V1 = Y0 − 1,
W0 = W2 = U0 \ V0, and W1 = U1 \ V1.

Lemma 4.1. The subsets Yi, Ui, Vi and Wi of Zm defined above satisfy the following properties:
(i) Vi = Zm \ (U1 + 1) for i = 0, 2;
(ii) |Vi| = |Yi| = (m − 1)/2, |Ui| = (m + 1)/2 and |Wi| = 1, for each i ∈ Z3;
(ii) Vi and Wi partition Ui, whereas Ui and Yi partition Zm, for each i ∈ Z3.
Proof. We give the proof by explicitly listing the subsets Yi, Ui, Vi and Wi, i ∈ Z3, which we split into
two cases. Whenm ≡ 1 mod 4, the subsets are

Y0 = Y2 = Ψ2,3, Y1 = Ψ0,3 \ {0},
U0 = U2 = Ψ0,1, U1 = Ψ1,2 ∪ {0},
V0 = V2 = Ψ0,1 \ {1}, V1 = Ψ1,2,
W0 = W2 = {1}, and W1 = {0}.

Whenm ≡ 3 mod 4, the subsets are

Y0 = Y2 = Ψ2,3, Y1 = Ψ0,3,
U0 = U2 = Ψ0,1, U1 = Ψ1,2,
V0 = V2 = Ψ0,1 \ {0}, V1 = Ψ1,2 \ {−1},
W0 = W2 = {0}, and W1 = {−1}.

Properties (i)–(iii) are routine to check in each case. �

Now we are in a position to construct our Latin squares.
Latin squareF3m: For oddm > 3,we define the Latin squareF3m of order 3m and indexed byZ3⊕Zm.

Let ℓ = m − 1 and = m − 2 and define
F3m[(a, b), (c, d)]

=



(a + c, b + d − 1) if (a = c = 0 or a = c = 2) and b ≠ ℓ,
(c + 1, d) if (a, b) = (0, ℓ) and (c = 0, d ∈ U0 or c = 2, d ∈ Y2),
(c + 2, d − 1) if (a, b) = (0, ℓ) and (c = 0, d ∈ Y0 or c = 1, d ∈ U1),
(c + 1, d) if (a, b) = (2, ℓ) and (c = 0, d ∈ Y0 or c = 2, d ∈ U2),
(c, d − 1) if (a, b) = (2, ℓ) and (c = 1, d ∈ U1 or c = 2, d ∈ Y2),
(0, d − 2) if (a, b) = (1, 0) and c = 0,
(1, d − 2) if (a, b) = (1, 0) and c = 2,
(a + c, b + d) otherwise.

For each e ∈ ∆∗ ⊂ F3m, we display in Fig. 2 the abbreviated ordered pairs ∆(e). For convenience,
we rearrange the columns corresponding to the subsetsWi, Vi and Yi of Zm, i ∈ Z3. The shaded regions
will be shown to consist of transversal-free entries.

First, wewill show that F3m has a twofold symmetry. An isotopy of a Latin square L is a permutation
of its rows, a permutation of its columns, and a permutation of its symbols. An isotopy that maps L to
itself is called an autotopy of L.



1138 I.M. Wanless, X. Zhang / European Journal of Combinatorics 34 (2013) 1130–1143

Fig. 2. Values of ∆ on F3m .

Let σ = (0 1) and τ = (0 2) be two transpositions acting on Z3. Define a permutation α of Z3 ⊕ Zm
by (a, b)α = (aτ , b) and a permutation β of Z3 ⊕ Zm by (a, b)β = (aσ , b). Let F′

3m be the Latin square
obtained by applying α to the rows and columns of F3m, and β to the symbols.

Lemma 4.2. F′

3m = F3m.

Proof. It is routine to verify that F′

3m[(a, b), (c, d)] = F3m[(a, b), (c, d)] holds for all (a, b), (c, d) in
Z3 ⊕ Zm. For example, when a = 0, b = −1 and c = 0, d ∈ Y0,

F
′

3m[(a, b), (c, d)] = F
′

3m[(0, −1), (0, d)]

= F3m[(2, −1), (2, d)]β = (2, d − 1)β

= (2, d − 1) = F3m[(a, b), (c, d)].

The third equality holds since Y0 = Y2. �

4.2. Transversal-free entries in F3m

Wepartition F3m into subrectangles as follows according to the distinct∆(e) values shown in Fig. 2
and the subsetsWi, Vi and Yi of Zm, i ∈ Z3. The short boxes represent segments in rows 0ℓ, 10 and 2ℓ
respectively. We also shade the regions that will be shown to consist of transversal-free entries.

x00 x01 x02

w00 v00 y00 w01 v01 y01 w02 v02 y02
y10 y12

x10 x11 x12

x20 x21 x22

w20 v20 y20 w21 v21 y21 w22 v22 y22
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Suppose that T is a transversal of F3m. For i, j ∈ Z3, define xij, yij, vij, wij to be the number of entries
in T contained in the corresponding subrectangles as shown above. Further, let

uij = vij + wij, for i = 0, 2 and j ∈ Z3.

As in Section 3, a number of constraints are immediate from the definition of these parameters. We
will make repeated implicit use of the bounds 0 6 x11 6 m and 0 6 yij, uij, vij, wij 6 1. Moreover, the
distribution of these parameters forces

j∈Z3

(yij + uij) = 1, for i ∈ {0, 2}, (14)

y10 + y12 6 1, y10 + y12 + x11 > 1 and (15)
0 6 xij 6 m − 1 if (i, j) ≠ (1, 1). (16)

Also, the need for T to include one representative from each row, column and symbol of F3m implies

x00 + x01 + x02 + y00 + y01 + y02 + u00 + u01 + u02 = m, (17)
x10 + x11 + x12 + y10 + y12 = m, (18)
x20 + x21 + x22 + y20 + y21 + y22 + u20 + u21 + u22 = m, (19)
x00 + x10 + x20 + y00 + y10 + y20 + u00 + u20 = m, (20)
x01 + x11 + x21 + y01 + y21 + u01 + u21 = m, (21)
x02 + x12 + x22 + y02 + y12 + y22 + u02 + u22 = m, (22)
x02 + x11 + x20 + y00 + y22 + u02 + u20 = m. (23)

Adding (17), (19), then subtracting (21) and (23), gives

2x11 = x00 + x22 + y02 + y20 + u00 + u22. (24)

Moreover, Lemma 2.1 necessitates that

3 | u00 + 2y00 + 2u01 + y02 + 2y10 + y12 + 2y20 + u21 + 2u22 + y22, (25)
m | −x00 − x22 + y02 − 2y10 − 2y12 + y20 + u00 + u22. (26)

The above restrictions will help to show that entries of F3m contained in the shaded regions in Fig. 2
are all transversal-free. To prove this, we need to generalize the definition of transversal to rectangular
matrices with more columns than rows. A transversal of such a matrix is a selection of entries such
that one entry is selected from each row and the chosen entries are in different columns and contain
different symbols. We have the following lemma.

Lemma 4.3. Suppose that m is odd. Let M = [mij] be an (m−1)×mmatrix over Zm where the rows are
indexed by Zm \ {ℓ}, the columns are indexed by Zm, and mij = i + j − 1. Suppose that T ′ is a transversal
of M that hits every symbol except s and every column except c. Then c ≡ s + 2mod m.

Proof. All calculations will be in Zm. The sum of the symbols in T ′ is
k∈Zm

k − s =


(i,j,k)∈T ′

(i + j − 1) =


i∈Zm\{ℓ}

i +

j∈Zm

j − c − (m − 1)

=


i∈Zm

i + 1 +


j∈Zm

j − c + 1.

The result follows, since the sum of the elements of Zm is 0. �

For i ∈ {0, 2}, let Ii be the subrectangle of size (m − 1) × m formed by rows {i0, i1, . . . , i } and
columns {i0, i1, . . . , iℓ}. We will apply Lemma 4.3 to I0 and I2 several times in our next lemma (by
projecting onto the second coordinate of Z3 ⊕ Zm). Our aim is to demonstrate that F3m has many
transversal-free entries in rows 0ℓ and 2ℓ.
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Lemma 4.4. y00 + v01 = y01 + v02 = v20 + y21 = v21 + y22 = 0.

Proof. By Lemma 4.2, we only need to prove that y00 + v01 = y01 + v02 = 0.
Assume that y00+v01+y01+v02 = 1. By (14), it follows that u00 = y02 = 0. Now, (24) implies that

x00 + x22 + y20 + u22 = 2x11, which must be even. To satisfy (14), (16) and (26), the only possibilities
are

(i) y10 + y12 = 0, y20 + u22 = 0, x00 + x22 = 0;
(ii) y10 + y12 = 0, y20 + u22 = 1, x00 + x22 = 1;
(iii) y10 + y12 = 1, y20 + u22 = 0, x00 + x22 = 2(m − 1).

For (i), x11 = 0 by (24), which violates (15). Meanwhile, (ii) is incompatible with (14) and (25). So we
may assume (iii).

We have xii = m − 1 for each i ∈ Z3 by (16) and (24), which means all xij = 0 when i ≠ j by (14)
and (17)–(19). Now, in order to satisfy y00 + v01 + y01 + v02 = 1 there are four possibilities according
to which variable is positive. The treatment of each case is similar.

Case 1: y00 = 1.
We deduce in turn that u01 = y01 = 0 by (14); y12 = 1 and u21 + y22 = 0 by (25) and y21 = 1 by

(21). Since x00 = m − 1, then all the symbols {0} ⊕ Zm in T lie in I0 and a subrectangle R formed by
row 2ℓ and columns in {1} ⊕ Y1. Hence T includes a transversal T ′ of I0 that misses the symbol that T
hits in R. The symbols in R are {0} ⊕ (Y1 − 1) = {0} ⊕ Y0, so by Lemma 4.3, T ′ hits every column in
I0 except one column from {0} ⊕ (Y0 + 2) = {0} ⊕ V0. This means T ′ hits every column in {0} ⊕ Y0,
which is a contradiction since y00 = 1.

Case 2: v01 = 1.
We deduce that y00 = 0 and u01 = 1 by (14); y12 = 1, y10 = 0 and u21 + y22 = 0 by (25); and

u20 = 1by (20). All the symbols {0}⊕Zm in T lie in I0 and a subrectangle formedby row0ℓ and columns
in {1} ⊕ V1. Hence the transversal T ′ in I0 is missing some symbol in {0} ⊕ (V1 − 1) = {0} ⊕ (Y0 − 2).
By Lemma 4.3, T ′ hits every column in I0 except one column from {0} ⊕ Y0, which means T ′ must hit
every column in {0} ⊕ U0. This is a contradiction since u20 = 1.

Case 3: y01 = 1.
We deduce that y00 = u01 = u02 = 0 by (14); y12 = 0 by (25) and y22 = 1 by (22). The symbols

{1} ⊕ Zm in T lie in I2 and a subrectangle formed by row 0ℓ and columns in {1} ⊕ Y1. Hence the
transversal T ′ in I2 is missing some symbol in {1} ⊕ (Y1 − 1) = {1} ⊕ Y2. By Lemma 4.3, T ′ hits every
column in I2 except one column from {2} ⊕ (Y2 + 2) = {2} ⊕ V2, which means T ′ must hit every
column in {2} ⊕ Y2. This contradicts y22 = 1.

Case 4: v02 = 1.
We deduce that y00 = u01 = y01 = 0 by (14); u21 + y22 = 1 by (25) and so u21 = 1 by (21). The

symbols {1} ⊕ Zm in T lie in I2 and a subrectangle formed by row 2ℓ and columns in {1} ⊕ U1. Hence
the transversal T ′ in I2 is missing some symbol in {1} ⊕ (U1 − 1). By Lemma 4.3, T ′ hits every column
in I2 except one column from {2} ⊕ (U1 + 1). By Lemma 4.1(i), it follows that T ′ hits every column in
{2} ⊕ V2 in I2. This contradicts v02 = 1.

Since all options have led to a contradiction, the result is proved. �

4.3. Applications of F3m

Lemma 4.4 says that F3m has 2(m−1) transversal-free entries in row 0ℓ (and similarly, in row 2ℓ).
Hence, F3m has at mostm+ 2 disjoint transversals, which greatly improves the bound in Theorem 1.4
for odd orders which are divisible by 3.

Theorem 4.5. If n is an odd multiple of 3, then µ(n) 6 n/3 + 2.

The following lemma shows further restrictions on the transversal entries in rows 0ℓ and 2ℓ.
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Lemma 4.6. In F3m, we have

(i) y02 + u00 = 1 if and only if y20 + u22 = 1;
(ii) w01 = 1 if and only if w20 = 1;
(iii) w21 = 1 if and only if w02 = 1.

Proof. First, suppose that y02 + u00 + y20 + u22 = 1. By (24), x00 + x22 is odd. So the only possibility
satisfying (14), (16) and (26) is that y10 + y12 = 0, x00 + x22 = 1. In this case, the right hand side of
(25) will become u00 + y02 + 2y20 + 2u22 + 2w01 + w21, which will be 1 + w21 if u00 + y02 = 1, or
2 + 2w01 if y20 + u22 = 1. However, neither of these options can be divisible by 3 as required. Hence
y02 + u00 + y20 + u22 ≠ 1, which proves (i).

For (ii), if w01 = 1 and w20 = 0, then w21 = w02 = 0; if w01 = 0 and w20 = 1, then w21 = 0, and
further w02 = 0 since F3m[(0, ℓ), (2, d)] = F3m[(2, ℓ), (0, d)] = (2, d − 1) when d ∈ W0. Hence, for
both cases, we have that y02 + u00 + y20 + u22 = 1, which is a contradiction.

Result (iii) follows from (ii) by Lemma 4.2. �

We remark that parts (ii) and (iii) of Lemma 4.6 demonstrate that F3m contains pairs of entries
such that any transversal that includes one element of the pair necessarily includes the other as well.
This property was called ‘‘crimped’’ in [5], where it was used to create Latin squares that have an
orthogonal mate but are not in any triple of MOLS. However, F3m clearly does not have an orthogonal
mate, since it contains transversal-free entries.

Lemma 4.6 also allows us to construct a set S of permutations over Z3 ⊕Zm with |S| = 3m+3 and
cr(S) 6 3m − 2. This gives a worse upper bound for f (3m, 2) than Theorem 3.3, but the bound is still
n + O(1). We take as S the rows of F3m, plus a permutation

(1, 0)(1, 1) · · · (1, ℓ)(2, 0)(2, 1) · · · (2, ℓ)(0, 0)(0, 1) · · · (0, ℓ)

and any two other permutations g1 and g2 that satisfy (0, d0)g1 = (2, d0), (1, d1)g1 = (0, d1), (1, d1)g2
= (1, d1) and (2, d2)g2 = (2, d2), for di ∈ Wi and i ∈ Z3.

5. Covering radius n − 3

An interesting special case of the covering radius problem is to insist that your set of permutations
is in fact a permutation group. In this short section we find the covering radius of AGL(1, q), the affine
general linear group of degree 1.We also find the value of f (5, 3), which is the smallest nontrivial case
for s = 3.

While the rest of the paper deals with the case s = 2, this section pertains to s = 3; that is f (n, 3).
In [4] it was shown that

• cr(AGL(1, q)) = q − 2 when q is even,
• q − 4 6 cr(AGL(1, q)) 6 q − 3 when q is odd,
• cr(AGL(1, q)) = q − 3 when q ≢ 1 mod 6,

and it was conjectured that cr(AGL(1, q)) = q − 3 whenever q is odd. We now prove this conjecture.
The proof was communicated to us by Simon Blackburn (Royal Holloway, University of London).

Theorem 5.1. cr(AGL(1, q)) = q − 3 when q is odd.

Proof. Let Fq be a field of odd order q. Given the previous results, it suffices to find a permutation
that is at distance at least q − 3 from every permutation in AGL(1, q). Let f : Fq → Fq be defined by
f (0) = 0 and f (x) = 1/x for x ≠ 0. Clearly f is a permutation.

Let g be a typical element of AGL(1, q), so g(x) = ax + b for constants a and b with a ≠ 0. When
x ≠ 0, we have 1/x = f (x) = g(x) = ax + b if and only if ax2 + bx − 1 = 0. This quadratic has at
most 2 solutions in Fq \ {0}. So there are at most 3 solutions to f (x) = g(x) in Fq. So f has the required
property; it is not within distance q − 4 of any member of AGL(1, q). �
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A corollary is that f (q, 3) 6 q(q − 1) for all prime powers q. In particular, f (5, 3) 6 20, as was
noted in [4]. However, it is possible to do much better. The following set of permutations of Z5 shows
that f (5, 3) 6 15:

01234 43012 42301 30142 21403
14023 02134 10342 13240 23401
24310 32410 34021 40213 41320.

For large q, using AGL(1, q) is far from optimal since it has quadraticallymanymembers. It was shown
in [4] that f (n, s) = O(n log n) for any fixed value of s. We end by showing that the above set of 15
permutations is optimal. In other words, f (5, 3) = 15.

For each g ∈ S5, let B(g) be the ball of radius 2 centred at g . Let B(S) = ∪g∈S B(g) for any S ⊂ S5.
The proof proceeds from the following three computational results.

(1) There does not exist a set S ⊂ S5 with |S| = 14, cr(S) = 2, and in which 4members have pairwise
disjoint balls of radius 2.

(2) For any g ∈ S5 let I(i) denotemax |B(g)\B(P)|, where themaximum runs over all sets P ⊂ S5\{g}
of cardinality i such that B(g) ∩ B(p) ≠ ∅ for p ∈ P . Note that I(i) is independent of g and it
suffices to compute it when g is the identity. We found that I(0) = 11, I(1) = 9 and I(2) =

I(3) = 8. Moreover, for all pairs (g, P) achieving I(3) = 8, {g} ∪ P is isomorphic to {01234,
02134, 01243, 02143}.

(3) There does not exist a set S ⊂ S5 with |S| = 14, cr(S) = 2 and containing the four permutations
01234, 02134, 01243, 02143.

Results (1) and (3) were obtained by starting with a set of 4 permutations and extending it in all
possible ways by backtracking. The other 10 permutations were chosen in a lexicographic order. The
search was pruned whenever the number of permutations that remained uncovered was too great to
be covered even if all subsequently chosen balls turned out to be disjoint.

We now deduce the nonexistence of a set S ⊂ S5 with |S| = 14 and cr(S) = 2. Suppose such a
set S exists. We seek disjoint subsets S1, S2, S3 of S of cardinality 3 with the following property: for
1 6 i 6 3 and for all p ∈ S \ ∪j6i Sj, there exists some pj ∈ Sj, for each j 6 i, such that B(p) ∩ B(pj) ≠ ∅.
By result (1), wemay find each Si in turn by including within it a subset of S \∪j<i Sj which is maximal
with respect to the requirement that the corresponding balls of radius 2 are pairwise disjoint. Now,B(S1 ∪ S2 ∪ S3)

 6 3

I(0) + I(1) + I(2)


= 3(11 + 9 + 8) = 84,

by our choice of S1, S2, S3. Also, we may assume that for each p ∈ S \ (S1 ∪ S2 ∪ S3) there exists pi ∈ Si,
for 1 6 i 6 3, such that B(p) ∩ B(pi) ≠ ∅. Moreover, by results (2) and (3) above, we can assume thatB(p) \ B({p1, p2, p3})

 6 7. Hence |B(S)| 6 84 + 5 × 7 = 119 < 120, which is a contradiction. We
conclude that f (5, 3) = 15 as claimed.

6. Concluding remarks

We have improved the upper bounds on f (n, 2), the size of the smallest set S of permutations in Sn
such that every other permutation in Sn agrees with at least one element of S in at least two places. In
particular, we showed that f (n, 2) 6 n + O(log n) for all n and f (n, 2) 6 n + 2 if n > 3 is divisible by
3. Further, in a Latin square L let λ(L) be the maximum number of disjoint transversals and let µ(n)
be the minimum value of λ among all the Latin squares of order n. We showed that µ(n) 6 1

3n+ 2 for
all odd n divisible by 3, significantly improving on the previous best bound of µ(n) 6 1

2 (n + 1).
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